How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets.
نویسندگان
چکیده
We analyzed 12 combined mitochondrial and nuclear gene datasets in seven orders of insects using both equal weights parsimony (to evaluate phylogenetic utility) and Bayesian methods (to investigate substitution patterns). For the Bayesian analyses we used relatively complex models (e.g., general time reversible models with rate variation) that allowed us to quantitatively compare relative rates among genes and codon positions, patterns of rate variation among genes, and substitution patterns within genes. Our analyses indicate that nuclear and mitochondrial genes differ in a number of important ways, some of which are correlated with phylogenetic utility. First and most obviously, nuclear genes generally evolve more slowly than mitochondrial genes (except in one case), making them better markers for deep divergences. Second, nuclear genes showed universally high values of CI and (generally) contribute more to overall tree resolution than mitochondrial genes (as measured by partitioned Bremer support). Third, nuclear genes show more homogeneous patterns of among-site rate variation (higher values of alpha than mitochondrial genes). Finally, nuclear genes show more symmetrical transformation rate matrices than mitochondrial genes. The combination of low values of alpha and highly asymmetrical transformation rate matrices may explain the overall poor performance of mitochondrial genes when compared to nuclear genes in the same analysis. Our analyses indicate that some parameters are highly correlated. For example, A/T bias was positively and significantly associated with relative rate and CI was positively and significantly associated with alpha (the shape of the gamma distribution). These results provide important insights into the substitution patterns that might characterized high quality genes for phylogenetic analysis: high values of alpha, unbiased base composition, and symmetrical transformation rate matrices. We argue that insect molecular systematists should increasingly focus on nuclear rather than mitochondrial gene datasets because nuclear genes do not suffer from the same substitutional biases that characterize mitochondrial genes.
منابع مشابه
How do insect nuclear ribosomal genes compare to protein-coding genes in phylogenetic utility and nucleotide substitution patterns?
The expanding data set on insect molecular systematics allows examination of phylogenetic performance and molecular evolution of different types of gene. Studies combining more than one gene in the same analysis allow examination of the relative contribution and performance of each gene partition and can help inform gene choice for resolving deep and/or problematic divergences. We compared resu...
متن کاملPhylogeny of Ononis in Iran using nuclear ribosomal DNA and chloroplast sequence data
The genus Ononis,embraces more than 85 species worldwide. In the present study, materials of two subspecies of O. spinosa from different localities of Iran alongside some other native species of the genus were included in phylogenetic analyses. In addition, over 50 accessions were obtained from GenBank. In order to clarify the exact number of subspecies of O. spinosa in Iran, datasets were obta...
متن کاملPhylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): inferences from mitochondrial and nuclear gene sequences.
Notothenioids represent an adaptive radiation of teleost fishes in the frigid and ice-laden waters of the Southern Ocean surrounding Antarctica. Phylogenetic hypotheses for this clade have resulted primarily from analyses of mtDNA gene sequences, and studies utilizing nuclear gene DNA sequence data have focused on particular sub-clades of notothenioid fishes. In this study, we provide the first...
متن کاملPhylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids.
The Rosids is one of the largest groups of flowering plants, with 140 families and ∼70,000 species. Previous phylogenetic studies of the rosids have primarily utilized organelle genes that likely differ in evolutionary histories from nuclear genes. To better understand the evolutionary history of rosids, it is necessary to investigate their phylogenetic relationships using nuclear genes. Here, ...
متن کاملMolecular characterization of a new microvariant of the G3 genotype for Echinococcus granulosus in water buffalo in Iran
In this study, molecular characterization of Echinococcus granulosus sample obtained from water buffalo originating from southwest of Iran was performed using comparative sequence analysis of cox1 mitochondrial gene. DNA was extracted from protoscoleces removed from hydatid cyst from the liver of a 2-year-old male buffalo slaughtered in Khuzestan province. Molecular and phylog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2004